Publications

Download BibTeX.

pubs
[1] A. Joshi, M. Cho, V. Shah, B. Pokuri, S. Sarkar, B. Ganapathysubramanian, and C. Hegde. In Proc. AAAI Conf. Artificial Intelligence, Feb. 2020.
[2] V. Shah and C. Hegde. Signal reconstruction from modulo observations. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Apr. 2019.
[3] M. Cho and C. Hegde. Reducing the search space for hyperparameter optimization using group sparsity. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Apr. 2019.
[4] R. Hyder, V. Shah, C. Hegde, and S. Asif. Alternating phase projected gradient descent with generative priors for solving compressive phase retrieval. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Apr. 2019.
[5] A. Mukherjee, A. Joshi, S. Sarkar, and C. Hegde. Attribute-controlled traffic data augmentation using conditional generative models. In CVPR Workshop on Vision for All Seasons, Jun. 2019.
[6] A. Joshi, A. Mukherjee, S. Sarkar, and C. Hegde. Semantic adversarial attacks: Parametric transformations that fool deep classifiers. In Inter. Conf. on Computer Vision (ICCV), Jul. 2019.
[7] V. Shah, A. Joshi, S. Ghosal, B. Pokuri, S. Sarkar, B. Ganapathysubramanian, and C. Hegde. Encoding invariances in deep generative models. Preprint, Jun. 2019.
[8] G. Jagatap and C. Hegde. Algorithmic guarantees for inverse imaging with untrained network priors. In NeurIPS, Sep. 2019.
[9] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar. Incremental consensus-based collaborative deep learning. In Proc. ICML Workshop on Nonconvex Optimization for Machine Learning, July 2018.
[10] G. Jagatap and C. Hegde. Towards sample-optimal methods for solving random quadratic equations with structure. In Proc. IEEE Int. Symp. Inform. Theory (ISIT), June 2018.
[11] M. Soltani and C. Hegde. Fast low-rank matrix estimation for ill-conditioned matrices. In Proc. IEEE Int. Symp. Inform. Theory (ISIT), June 2018.
[12] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar. Decentralized stochastic momentum gradient descent for multi-agent learning. Preprint, June 2018.
[13] G. Jagatap and C. Hegde. Learning ReLU networks using alternating minimization. Preprint, June 2018.
[14] T. Nguyen, R. Wong, and C. Hegde. Autoencoders learn generative linear models. Preprint, June 2018.
[15] T. Nguyen, R. Wong, and C. Hegde. Autoencoders learn generative linear models. In Proc. ICML Workshop on Theory and Applications of Deep Generative Modeling (TADGM), June 2018.
[16] H. Rajan, E. Weber, C. Hegde, J. Smith, P. Aduri, Z. Zhu, J. Tao, H. Bagheri, I. Kouper, E. Rozier, S. Sarkar, R. Maitra, and B. Plale. Dependable Data Science: Challenges and Opportunities. Preprint, March 2018.
[17] C. Hegde. Algorithmic aspects of inverse problems using generative models. In Proc. Allerton Conf. on Comm., Contr., and Comp., Oct. 2018.
[18] S. Asif and C. Hegde. Phase retrieval for signals in a union of subspaces. In Proc. IEEE Global Conf. Signal and Image Processing (GlobalSIP), Nov. 2018.
[19] P. Chakraborty, C. Hegde, and A. Sharma. Freeway incident detection from cameras: A semi-supervised learning approach. In Proc. IEEE Int. Conf. Intelligent Transportation Systems (ITSC), Nov. 2018.
[20] M. Soltani and C. Hegde. Towards provable learning of polynomial neural networks using low-rank matrix estimation. In Proc. Intl. Conf. Artificial Intelligence and Statistics (AISTATS), Apr. 2018.
[21] T. Nguyen, R. Wong, and C. Hegde. A provable approach for double-sparse coding. In Proc. AAAI Conf. Artificial Intelligence, Feb. 2018.
[22] M. Soltani and C. Hegde. Provable algorithms for learning two-layer polynomial neural networks. Preprint, Jan. 2018.
[23] G. Jagatap, Z. Chen, C. Hegde, and N. Vaswani. Fourier ptychography using structured sparsity. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Apr. 2018.
[24] Z. Chen, G. Jagatap, S. Nayer, C. Hegde, and N. Vaswani. Low rank fourier ptychography. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Apr. 2018.
[25] V. Shah and C. Hegde. Solving linear inverse problems using gan priors: An algorithm with provable guarantees. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Apr. 2018.
[26] T. Nguyen, A. Soni, and C. Hegde. On learning sparsely used dictionaries from incomplete samples. In Proc. Int. Conf. Machine Learning (ICML), Jul. 2018.
[27] G. Jagatap, Z. Chen, C. Hegde, and N. Vaswani. Model corrected low rank ptychography. In Proc. IEEE Conf. Image Proc., Sept. 2018.
[28] P. Chakraborty, C. Hegde, and A. Sharma. Data-driven traffic incident detection using robust summary statistics. Preprint, Sept. 2018.
[29] G. Jagatap, Z. Chen, C. Hegde, and N. Vaswani. Fourier ptychography for structured data. Preprint, Nov. 2018.
[30] R. Singh, V. Shah, B. Pokuri, B. Ganapathysubramanian, S. Sarkar, and C. Hegde. Physics-aware deep generative models for microstructure simulation. In Proc. NIPS Workshop on Machine Learning for Molecules and Materials, Dec. 2018.
[31] V. Shah and C. Hegde. Signal reconstruction from modulo observations. Preprint, Oct. 2018.
[32] C. Hegde and A. Kamal. Theoretical foundations of computer engineering. Monograph available online, June 2017.
[33] C. Hegde. Lecture notes on data analytics. Monograph available online, June 2017.
[34] M. Soltani and C. Hegde. Improved algorithms for matrix recovery from rank-one projections. Preprint, available online at http://arxiv.org/abs/1705.07469, May 2017.
[35] M. Soltani and C. Hegde. Fast algorithms for demixing signals from nonlinear observations. IEEE Trans. Sig. Proc., 65(16):4209--4222, Aug. 2017.
[36] C. Hubbard and C. Hegde. Parallel computing heuristics for matrix completion. In Proc. IEEE Global Conf. Signal and Image Processing (GlobalSIP), Nov. 2017.
[37] B. Wang, C. Gan, J. Yang, C. Hegde, and J. Wu. Graph-based multiple-line outage identification in power transmission systems. In IEEE Power and Engineering Systems General Meeting (PES), Jul. 2017.
[38] M. Soltani and C. Hegde. Stable recovery of sparse vectors from random sinusoidal feature maps. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Mar. 2017.
[39] D. Sahoo, C. Hegde, and M. Bhattacharya. A programmed digital image analysis tool for rapid and precise phenotyping for arabidopsis at early stages. Preprint, Jan. 2017.
[40] C. Hegde. Learning graph evolutions from cut sketches: Faster algorithms, fewer samples. In Proc. Asilomar Conf. Sig. Sys. Comput., Nov. 2017.
[41] V. Shah, M. Soltani, and C. Hegde. Reconstruction from periodic nonlinearities, with applications to HDR imaging. In Proc. Asilomar Conf. Sig. Sys. Comput., Nov. 2017.
[42] G. Jagatap and C. Hegde. Sample-efficient algorithms for recovering structured signals from magnitude-only measurements. Available online at http://arxiv.org/abs/1705.06412, Nov. 2017.
[43] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar. Collaborative deep learning over fixed topology networks. In Adv. Neural Inf. Proc. Sys. (NIPS), Dec. 2017.
[44] M. Soltani and C. Hegde. Fast algorithms for learning latent variables in graphical models. In Proc. ACM KDD Workshop on Mining and Learning with Graphs (KDD MLG), Aug. 2017.
[45] G. Jagatap and C. Hegde. Fast sample-efficient algorithms for structured phase retrieval. In Adv. Neural Inf. Proc. Sys. (NIPS), Dec. 2017.
[46] T. Nguyen, R. Wong, and C. Hegde. A provable approach for double-sparse coding. Preprint, available online at https://arxiv.org/abs/1711.03638, Nov. 2017.
[47] M. Cohen, C. Hegde, S. Jegelka, and L. Schmidt. Efficiently optimizing over (non-convex) cones via approximate projections. In Proc. NIPS Workshop on Optimization for Machine Learning (OPT), Dec. 2017.
[48] A. Balu, T. Nguyen, A. Kokate, C. Hegde, and S. Sarkar. A forward-backward approach for visualizing information flow in deep networks. In Proc. NIPS Symposium on Interpretability for Machine Learning, Dec. 2017.
[49] M. Soltani and C. Hegde. Fast low-rank matrix estimation without the condition number. Preprint, Dec. 2017.
[50] P. Chakraborty, C. Hegde, and A. Sharma. Trend filtering in network time series with applications to traffic incident detection. In Proc. NIPS Time Series Workshop (TSW), Dec. 2017.
[51] M. Soltani and C. Hegde. Demixing structured superposition signals from periodic and aperiodic nonlinearities. In Proc. IEEE Global Conf. Signal and Image Processing (GlobalSIP), Nov. 2017.
[52] C. Hubbard and C. Hegde. GPUFish: A parallel computing framework for matrix completion from a few observations. Technical report, Iowa State University, December 2016.
[53] C. Hegde, P. Indyk, and L. Schmidt. Nearly linear-time algorithms for graph-structured sparsity. In Proc. Intl. Joint Conf. Artificial Intelligence (IJCAI), Best Paper Awards Track, July 2016.
[54] C. Hegde. Bilevel feature selection in nearly-linear time. In Proc. Stat. Sig. Proc. (SSP), June 2016.
[55] C. Hegde. A fast algorithm for demixing signals with structured sparsity. In Proc. Intl. Conf. Sig. Proc. Comm. (SPCOM), June 2016.
[56] M. Soltani and C. Hegde. Demixing sparse signals from nonlinear observations. Technical report, Iowa State University, March 2016.
[57] C. Hegde. Bilevel feature selection in nearly-linear time. Preprint, 2016.
[58] C. Hegde, P. Indyk, and L. Schmidt. Fast recovery from a union of subspaces. In Adv. Neural Inf. Proc. Sys. (NIPS), Dec. 2016.
[59] M. Soltani and C. Hegde. Demixing sparse signals from nonlinear observations. In Proc. Asilomar Conf. Sig. Sys. Comput., Nov. 2016.
[60] M. Soltani and C. Hegde. Iterative thresholding for demixing structured superpositions in high dimensions. In Proc. NIPS Workshop on Learning in High Dimensions with Structure (LHDS), Dec. 2016.
[61] C. Hubbard, J. Bavslik, C. Hegde, and C. Hu. Data-driven prognostics of lithium-ion rechargeable battery using bilinear kernel regression. In Annual Conf. Prognostics and Health Management (PHM), Oct. 2016.
[62] M. Soltani and C. Hegde. A fast iterative algorithm for demixing sparse signals from nonlinear observations. In Proc. IEEE Global Conf. Signal and Image Processing (GlobalSIP), Dec. 2016.
[63] C. Hegde, P. Indyk, and L. Schmidt. A nearly linear-time framework for graph-structured sparsity. In Proc. Int. Conf. Machine Learning (ICML), July 2015.
[64] Y. Li, C. Hegde, A. Sankaranarayanan, R. Baraniuk, and K. Kelly. Compressive image classification via secant projections. J. Optics, 17(6), June 2015.
[65] J. Acharya, I. Diakonikolas, C. Hegde, J. Li, and L. Schmidt. Fast and near-optimal algorithms for approximating distributions by histograms. In Proc. Symp. Principles of Database Systems (PODS), May 2015.
[66] M. Araya-Polo, C. Hegde, P. Indyk, and L. Schmidt. Greedy strategies for data-adaptive shot selection. In Proc. Annual EAGE Meeting, May 2015.
[67] C. Hegde, P. Indyk, and L. Schmidt. Approximation algorithms for model-based compressive sensing. IEEE Trans. Inform. Theory, 61(9):5129--5147, Sept. 2015.
[68] C. Hegde, A. Sankaranarayanan, W. Yin, and R. Baraniuk. NuMax: A convex approach for learning near-isometric linear embeddings. IEEE Trans. Sig. Proc., 63(22):6109--6121, Nov. 2015.
[69] L. Schmidt, C. Hegde, P. Indyk, L. Lu, X. Chi, and D. Hohl. Seismic feature extraction using Steiner tree methods. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Apr. 2015.
[70] C. Hegde, P. Indyk, and L. Schmidt. Fast algorithms for structured sparsity. Bulletin of the EATCS, 1(117):197--228, Oct. 2015.
[71] C. Hegde, P. Indyk, and L. Schmidt. Nearly linear-time model-based compressive sensing. In Proc. Intl. Colloquium on Automata, Languages, and Programming (ICALP), July 2014.
[72] Y. Li, C. Hegde, and K. Kelly. Object tracking via compressive sensing. In Proc. Comput. Optical Sensing and Imaging (COSI), June 2014.
[73] C. Hegde, P. Indyk, and L. Schmidt. A fast approximation algorithm for tree-sparse recovery. In Proc. IEEE Int. Symp. Inform. Theory (ISIT), June 2014.
[74] L. Schmidt, C. Hegde, P. Indyk, J. Kane, L. Lu, and D. Hohl. Automatic fault localization using the Generalized Earth Movers Distance. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), May 2014.
[75] C. Hegde, A. Sankaranarayanan, and R. Baraniuk. Lie operators for compressive sensing. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), May 2014.
[76] S. Nagaraj, C. Hegde, A. Sankaranarayanan, and R. Baraniuk. Optical flow-based transport for image manifolds. Appl. Comput. Harmon. Anal., 36(2):280--301, March 2014.
[77] C. Hegde, P. Indyk, and L. Schmidt. Approximation-tolerant model-based compressive sensing. In Proc. ACM Symp. Discrete Alg. (SODA), Jan. 2014.
[78] C. Hegde, P. Indyk, and L. Schmidt. A fast adaptive variant of the GW algorithm for the Prize-Collecting Steiner Tree problem. DIMACS Workshop, Dec. 2014.
[79] L. Schmidt, C. Hegde, and P. Indyk. The Constrained Earth Movers Distance model, with applications to compressive sensing. In Proc. Sampling Theory and Appl. (SampTA), July 2013.
[80] C. Hegde, A. Sankaranarayanan, and R. Baraniuk. Learning measurement matrices for redundant dictionaries. In Proc. Work. Struc. Parc. Rep. Adap. Signaux (SPARS), July 2013.
[81] Y. Li, C. Hegde, R. Baraniuk, and K. Kelly. Compressive classification via secant projections. In Proc. Comput. Optical Sensing and Imaging (COSI), June 2013.
[82] E. Grant, C. Hegde, and P. Indyk. Nearly optimal linear embeddings into very low dimensions. In Proc. IEEE Global Conf. Signal and Image Processing (GlobalSIP), Dec. 2013.
[83] C. Hegde, P. Indyk, and L. Schmidt. Approximation algorithms for two-dimensional structured sparsity models. Preprint, Dec. 2013.
[84] C. Hegde and L. Schmidt. Model-based recovery of sparse matrices with bounded degree distributions. Preprint, Nov. 2013.
[85] C. Hegde and R. Baraniuk. SPIN: Iterative signal recovery on incoherent manifolds. In Proc. IEEE Int. Symp. Inform. Theory (ISIT), July 2012.
[86] C. Hegde, A. Sankaranarayanan, and R. Baraniuk. Learning manifolds in the wild. Preprint, July 2012.
[87] C. Hegde, O. Tuzel, and F. Porikli. Efficient upsampling of natural images. MERL Technical Report, March 2012.
[88] C. Hegde and R. Baraniuk. Signal recovery on incoherent manifolds. IEEE Trans. Inform. Theory, 58(12):7204--7214, Dec. 2012.
[89] D. Grady, M. Moll, C. Hegde, A. Sankaranarayanan, R. Baraniuk, and L. Kavraki. Multi-objective sensor replanning for a car-like robot. In Proc. IEEE Int. Symp. on Safety, Security, and Rescue Robotics (SSRR), Nov. 2012.
[90] D. Grady, M. Moll, C. Hegde, A. Sankaranarayanan, R. Baraniuk, and L. Kavraki. Multi-robot target verification with reachability constraints. In Proc. IEEE Int. Symp. on Safety, Security, and Rescue Robotics (SSRR), Nov. 2012.
[91] C. Hegde. Nonlinear Signal Models: Geometry, Algorithms, and Analysis. PhD thesis, ECE Department, Rice University, Sept. 2012.
[92] C. Hegde, A. Sankaranarayanan, and R. Baraniuk. Near-isometric linear embeddings of manifolds. In Proc. Stat. Sig. Proc. (SSP), Aug. 2012.
[93] C. Hegde and R. Baraniuk. Sampling and recovery of pulse streams. IEEE Trans. Sig. Proc., 59(4):1505--1517, Apr. 2011.
[94] D. Grady, M. Moll, C. Hegde, A. Sankaranarayanan, R. Baraniuk, and L. Kavraki. Look before you leap: Predictive sensing and opportunistic navigation. In Proc. IROS Workshop on Open Prob. Motion Plan., Sept. 2011.
[95] A. Sankaranarayanan, C. Hegde, S. Nagaraj, and R. Baraniuk. Go with the flow: Optical flow-based transport operators for image manifolds. In Proc. Allerton Conf. on Comm., Contr., and Comp., Sept. 2011.
[96] R. Baraniuk, M. Davenport, M. Duarte, and C. Hegde. An Introduction to Compressive Sensing. Connexions e-textbook, 2011.
[97] S. Schnelle, J. Laska, C. Hegde, M. Duarte, M. Davenport, and R. Baraniuk. Texas hold 'em algorithms for distributed compressive sensing. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), March 2010.
[98] C. Hegde and R. Baraniuk. Compressive sensing of a superposition of pulses. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), March 2010.
[99] M. Davenport, C. Hegde, M. Duarte, and R. Baraniuk. High-dimensional data fusion via joint manifold learning. In Proc. AAAI Fall Symp. on Manifold Learning, Nov. 2010.
[100] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compressive sensing. IEEE Trans. Inform. Theory, 56(4):1982--2001, Apr. 2010.
[101] M. Davenport, C. Hegde, M. Duarte, and R. Baraniuk. Joint manifolds for data fusion. IEEE Trans. Image Proc., 19(10):2580--2594, Oct. 2010.
[102] V. Cevher, P. Indyk, C. Hegde, and R. Baraniuk. Recovery of clustered sparse signals from compressive measurements. In Proc. Sampling Theory and Appl. (SampTA), May 2009.
[103] M. Duarte, C. Hegde, V. Cevher, and R. Baraniuk. Recovery of compressible signals from unions of subspaces. In Proc. IEEE Conf. Inform. Science and Systems (CISS), March 2009.
[104] C. Hegde, M. Duarte, and V. Cevher. Compressive sensing recovery of spike trains using a structured sparsity model. In Proc. Work. Struc. Parc. Rep. Adap. Signaux (SPARS), Apr. 2009.
[105] M. Davenport, C. Hegde, M. Duarte, and R. Baraniuk. A theoretical analysis of joint manifolds. Technical report, Rice University ECE Department, Jan. 2009.
[106] C. Hegde and R. Baraniuk. Compressive sensing of streams of pulses. In Proc. Allerton Conf. on Comm., Contr., and Comp., Sept. 2009.
[107] V. Cevher, M. Duarte, C. Hegde, and R. Baraniuk. Sparse signal recovery using Markov Random Fields. In Adv. Neural Inf. Proc. Sys. (NIPS), Dec. 2008.
[108] C. Hegde, M. Wakin, and R. Baraniuk. Random projections for manifold learning: Proofs and analysis. Technical Report TREE-0710, Rice Univ., ECE Dept., Dec. 2007.
[109] C. Hegde, M. Davenport, M. Wakin, and R. Baraniuk. Efficient machine learning using random projections. In Proc. NIPS Workshop on Efficient Machine Learning, Dec. 2007.
[110] M. Davenport, C. Hegde, M. Wakin, and R. Baraniuk. Manifold-based approaches for improved classification. In Proc. NIPS Workshop on Topology Learning, Dec. 2007.
[111] C. Hegde, M. Wakin, and R. Baraniuk. Random projections for manifold learning. In Adv. Neural Inf. Proc. Sys. (NIPS), Dec. 2007.

This file was generated by bibtex2html 1.99.